
CHAPTER

11
Case Studies of Wavelet
Applications

Having seen the properties and some general applications of the various types of wav-
elets, we are now ready to gain a conceptual understanding of some applications to
case studies. While we will not be demonstrating all the wavelets or types discussed, we
should be able to gain some intuitive insights into wavelet use.

In addition to some new examples, we will re-visit some that have been introduced ear-
lier in the book and can now be better understood with the further knowledge and in-
sights we have since acquired.

11.1 White Noise in a Chirp Signal

We begin by adding white noise to a chirp signal. The result is shown in Fig-
ure 11.1–1 below at left. The FFT at right shows that the white noise appears
at all frequencies (hence the name “white” as in all colors) and will be diffi-
cult to remove using conventional FFT methods.
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Figure 11.1–1 A chirp signal with white noise is shown in the time and frequency domains.

Using a conventional (non-wavelet) lowpass filter to keep only the low fre-
quencies produces the time and frequency results shown in Figure 11.1–2.
The low-frequency portion is fairly well denoised, but the high-frequency
portion (most of this chirp signal) has been severely attenuated.
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Figure 11.1–2 Conventional lowpass filtering accomplishes some denoising at the start of
the signal (left graph) but destroys most of the signal as well as the noise. This is also seen in
the FFT shown at right.

If we adjust the lowpass filter to be less severe we have the denoised signal
as shown in Figure 11.1–3. More of the signal is preserved but the highest
frequencies are still lost and the beginning of the signal is not de-noised very
well.
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Figure 11.1–3 . Less severe conventional lowpass filtering keeps more of the signal (but not
all) and the high frequency noise is still present, especially at the beginning.

We use a conventional DWT to attempt to denoise this signal. The decompo-
sition is shown if Figure 11.1–4. We try first a Db6 filter because it looks like
it might “match” portions of this asymmetric signal (ref. Fig. 6.4–2) and be-
cause it is short (6 points).
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Figure 11.1–4 Display of a conventional DWT of signal using a Db6 wavelet.

The signal is 1024 points (2^10) long so we could downsample 10 times, how-
ever a 5-level DWT, as shown here, is sufficient. The original noisy chirp sig-
nal is shown in the upper left graph while a mini-CWT of the signal is shown
at upper right (every 10th scale is sufficient in this case). The 5 levels of Ap-
proximations are at left while the 5 levels of Details are shown at right.

A frequency allocation diagram for a 5-level DWT (or UDWT) is shown in
Figure 11.1–5. We now demonstrate the time/frequency manipulation capa-
bilities of wavelet technology. We will keep only some of the data within a
certain time and within a certain frequency range.

We notice in the above DWT display that different parts of the noisy chirp
signal appear in levels D1 through D5. For example, in D1 (graphic directly
beneath the mini-CWT) it appears that the “signal” portion begins at about
time = 650 and that everything before that can be attributed to noise. We
thus set the first 650 D1 values to zero to attempt to de-noise the signal.
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 Figure 11.1–5 Frequency allocation for a 5-level DWT. Notice that S = D1+A1 =
D1+D2+A2 =    = D1+D2+D3+D4+D5+A5. Note also that the filters are imperfect.

For D2 it appears that the signal portion is located between about 400 to 800.
Thus we place zeros everywhere else.* This process is shown below in Figure
11.1–6 for D1 and D2.
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 Figure 11.1–6 D1 (1st graph) and D2 (third graph) are adjusted to be zero except for the
specified times (650 to 1024 for D1 and 400 to 800 for D2).

We continue this process through D5, keeping only the signal portions. We
are now ready to add the denoised details D1 through D5 together with A5
(ref. Fig. 11.1–5) to reconstruct our signal. We are not seeking perfect recon-
struction here but instead we wish to denoise the signal. Figure 11.1–7
shows the final result with this method of denoising.

                                                
* Although this process is being done somewhat “by hand” here, the MATLAB Wavelet Toolbox has interac-
tive graphics called “interval-dependent thresholding” that allows the user to quickly discard unwanted data in
specified periods of time.
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 Figure 11.1–7 The original noisy signal is shown at left. Denoising using a 5-level DWT
with Db6 wavelet filters gives the result at right. Compare with Figs. 11.1–2 and 11.1–3.

The results are impressive, especially when compared with conventional DSP
methods. They can be possibly improved by trying other wavelets or by per-
forming the time/frequency manipulations on additional levels.

We will talk further in an upcoming chapter about “throwing out the baby
with the bathwater”—throwing away some alias cancellation capability as we
discard the noisy parts of D1 through D6. For now, we can state that in each
of the levels the noise was far less than the signal and the effect of aliasing
was minimal. We will compare this later with the results obtained using the
Undecimated DWT which has no such aliasing problems.

11.2 Binary Signal Buried in Chirp Noise

This next example is similar to the first except we have a binary signal and
the noise is in the form of a chirp.* The process is similar to that of the last
section. Figure 11.2–1 shows a Binary Phase Shift Keying, Polar Non-Return
to Zero (BPSK PNRZ) signal in both the time and frequency domains. This
example was mentioned in the overview Chapter One. We now provide more
details.

                                                
* A constant frequency jammer can be easily removed from data by conventional notch filtering using FFT
methods. A chirp jammer is more difficult because the frequency keeps changing. Wavelets work well here.



226 Conceptual Wavelets in Digital Signal Processing

© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

2000 4000 6000 8000
-10

-8

-6

-4

-2

0

2

4

6

8

10
PURE SIGNAL

TIME-->

AM
PL

IT
UD

E-
->

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200
FFT OF PURE SIGNAL

FREQ-->

M
AG

NI
TU

DE
-->

 Figure 11.2–1 The original binary signal is shown in the time domain. Note the values al-
ternate between –1 and +1. The FFT of this signal is shown at right.

The signal is next buried in 80 dB* of chirp noise as shown in Figure 11.2–2.
The left plot shows the chirp noise values from –10,000 to +10,000. Although
we can’t see the small binary signal with this much noise added, we show a
close-up (right graphic) of the noise from –100 to +100 with the original bi-
nary signal over-plotted for comparison (the signal overplotted on the full
noise would look like a straight line). Looking at the signal in the frequency
domain does not offer much hope of finding it either (ref. Fig. 1.9–2).
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 Figure 11.2–2 Binary signal from –1 to +1 with noise from –10,000 to +10,000 added is
shown at left. A close-up is shown at right with the original binary signal overplotted (the signal
would not be visible in 80 dB of noise). Note the dimensions.

                                                
* Decibels, not Daubechies—the decibel is named for Alexander Graham Bell and is abbreviated “dB” while a
Daubechies wavelet is named for Ingrid Daubechies and is abbreviated “Db”.
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This is another instance where we use wavelets. We talked earlier about
matching the wavelet to the signal. In this case we might consider a Haar
wavelet because it looks like the binary signal. However, with this much
noise we wouldn’t be able to find it! Instead, we will match the wavelet to the
noise. Because the signal is 8192 points long we will use a longer Db40 wav-
elet as shown in Figure 11.2–3. This looks a lot like the chirp signal and, as
we mentioned for large Daubechies filters, is fairly smooth. Also, this longer
wavelet should provide for fairly good frequency discrimination.
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 Figure 11.2–3 4954 point estimation of the “continuous” Db40 wavelet with the 40 points
of the H’ filter that created it superimposed (along with trailing zeros).

We will use a 7-level DWT here. The results are shown in Figure 11.2–4 be-
low. We notice that the match of the wavelet to the noisy signal is excellent
and that the highest frequency portion of the chirp noise is found in right-
hand part of D1 (ref. Fig. 11.1–5). Mid-frequency portions are found in the
center of the D2 through D5 plots and the lowest frequencies are found at
the left of the D6 and D7 plots.

We can also literally see how A1 and D2 combine to make the signal (left top
graph), how A2 and D2 combine to make A1 and so on.
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Figure 11.2–4 7-level DWT of binary signal with 80 dB of noise added. Wavelet filters used
are Db40.

Looking at D2 (Details, #2) on the above display we might assume we would
be “safe” to delete the values from about 1500 to 7500 because the chirp por-
tion seems to be isolated in this area. A close-up look at D2 limiting the val-
ues to the range –2 to +2 (rather than –10000 to + 10000) tells a different
story as shown in Figure 11.2–5 (left). We see a binary pattern in the first
1000 points and perhaps a few more points at the end. Rather than plotting
close-ups and setting the chirp jammer portions to zero by hand, we can
automate this process. We use a “reverse threshold’ in which any values of
the signal greater than, say, 2 (or less than –2) are set to zero.*

                                                
* We can set up this “reverse” threshold in software or we can use median filtering to keep the binary parts.
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 Figure 11.2–5 Close-up of D2 showing remnants of the signal at left. After reverse thre-
sholding using a median filter we keep only the values less than 2 and set to zero all the large
values as shown in the right graph.

The right graph of Figure 11.2–5 above shows the result. We have only the
“scraps” left over (in this frequency bandwidth of D2). However, looking
again at the 7 Details on the above DWT display we can see that these
“scraps” will be located at different times. D1 with the chirp noise removed
gives us remnants at the beginning while D3 and D4 give us remnants in the
middle and D6 and D7 give us remnants at the end.

With the chirp portions thresholded to zero we now combine these de-noised
Details as

Sig’ = A7 + D7’ + D6’+ D5’ + D4’ + D3’ + D2’ + D1’

where the prime indicates de-noised. A close-up of the denoised signal is
shown in Figure 11.2–6 along with the original binary signal for comparison.
The denoising is not perfect, but allows us to reconstruct a recognizable bi-
nary signal. This would not have been possible using conventional DSP
methods.

This is a good example of how wavelets are useful to match either the signal
or the noise and how the time/frequency nature of wavelet processing allows
us flexibility we would not find in either the time or the frequency domains
by themselves.
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 Figure 11.2–6 Portion of signal pulled from 80 dB of noise using time-specific thresholding
with a 7-level conventional DWT is shown at top. Original binary signal. is redrawn at bottom
for comparison.

11.3 Binary Signal with White Noise

This time a binary signal has intermittent white noise added as shown in
Figure 11.3–1. The signal has 16 “chips” (binary value +1 or –1) per bit. For
example, the binary sequence [1 –1] is represented by 16 values of +1 fol-
lowed by sixteen values of –1. The “pure” signal here is 1024 chips (points)
long and represents 64 bits. The first 8 bits are [1 –1  1 –1  1  1 –1 –1].
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Figure 11.3–1 Binary signal with 16 ”chips” per bit is shown at left. Intermittent pseudo-
random noise is added as shown at right.

We can actually see part of the signal in the time domain, but not enough to
decode it. Figure 11.3–2 shows the pure binary signal and the noisy signal in
the frequency domain.
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Figure 11.3–2 FFT of the original binary signal at left and the FFT of the signal with in-
termittent noise at right.

We will encounter problems using conventional DSP lowpass filtering tech-
niques because of the amount of high frequencies that come from the
“untouched” portions of the pure binary signal (ref. Fig. 11.3–2, left). In other
words, both the signal and the noise have high frequency components.

A square wave, as most audio enthusiasts know, is made up of many fre-
quencies.* Also, we have tried to make the binary signal realistic by including
“wide” areas (e.g. sections where the bit pattern is “–1 –1 –1 –1” etc. instead
of just “1 –1  1  1 –1  1 –1” etc.). Thus having sections in the signal with the
(variable-length) square bits may actually make it harder to separate from
the sporadic noise using conventional filtering techniques.

One conventional method might be to use a series of Short Time Fourier
Transforms (STFTs) on the “clean” and noisy sections separately. However,
wavelet technology incorporates this same time/frequency capability with a
better match to the signal than the FFT sinusoids.

We have seen in the previous 2 examples methods of using the simultaneous
time/frequency capabilities of wavelets by selectively denoising the Details at

                                                
* Early Rock musicians would intentionally crank up their tube-type amplifiers to distortion. Instead of “clean”
sinusoids the tops and bottoms of the sine waves would be clipped flat and would look more like square waves
and sound to the human ear like a combination of many high-frequency harmonics and overtones. The next gen-
eration of amplifiers provided a smoother attenuation and less harmonics—which caused the old tube amplifiers
to be highly sought after by the Rock musicians! Amplifier manufacturers finally caught on and developed solid-
state units that provide flat clipping and the harmonic distortions so loved by some young musicians (and tol-
erated at best by most senior DSP professors).
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specified times and we could do that again here. However, we will show in-
stead the power of a good match of wavelet to signal.

This time we will begin by choosing a wavelet that matches the binary sig-
nal—the Haar would be a good choice. Using a conventional DWT we could
decompose up to 10 levels (1024 = 2^10) but 5 levels will adequately demon-
strate the process. First we will perform the DWT on the pure noiseless bi-
nary signal using the Haar wavelet. The display is shown in Figure 11.3–3.

We notice that the Details in levels 1 through 4 are zero. This is true for any
time interval of the binary signal. For example the “skinny” square waves at
the beginning of the pure binary signal (ref. Fig. 11.3–1 at left) as well as the
“fat” square waves closer to the middle (times roughly 200 to 500) all produce
zero values for the Details in levels 1 through 4. This means that for any bi-
nary signal similar to this test case the information is captured in the higher
levels (D5, D6, etc.) that we have learned represent the lower frequencies
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Figure 11.3–3 DWT of the original binary signal (top left) with CWT (top right).
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Specifically, we know that the pure binary signal, S, can be represented by

S = D1+A1 = D2+D1+A2 = . . . = D4+D3+D2+D1+A4

But with the Details being zero on the first 4 levels we have

S = 0 + 0 + 0 + 0 + A4 = A4

We can see this in the above DWT display as we compare the signal (top left)
to the Approximations in levels 1 through 4.

The DWT display of the binary signal with intermittent noise is shown in
Figure 11.3–4.
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Figure 11.3–4 DWT of the original binary with intermittent noise added.

We notice that there is information in all 5 levels of Approximations and De-
tails. However, we now know that for a binary signal similar to our test case
that the information in levels 1 through 4 of the Details is all noise. This
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means that the level 4 Approximations (A4) contains the signal with much of
the noise removed.

Figure 11.3–5 shows at left the partially de-noised signal found in A4. The
right graph shows the original signal for comparison. The original signal is
also superimposed on the denoised signal (dotted lines).

Figure 11.3–5 Denoised binary signal at left. For comparison, the original pure binary sig-
nal is superimposed on the left graph and presented by itself at right.

Although not perfect, we can tell which bits are positive and which are nega-
tive and thus +1 or –1. The bit pattern is thus preserved after denoising.

The CWTs we saw in the upper right corner of the DWT displays deserve a
closer look. Figure 11.3–6 shows the CWTs for the pure binary signal and the
signal with the intermittent noise added.
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Figure 11.3–6 CWT displays using Haar wavelet of pure binary signal and of noisy signal.

The displays look somewhat like a row of pipes on a pipe organ. The smaller
“pipes” indicate the “skinny” square waves as found at the left side of each of
the CWT displays (times from about 1 to 40). The larger “pipes” indicate the
“fatter” waveforms just to the left of the middle of each display (about time =
400). These displays show the magnitude of the values so –1 will appear as
bright as +1. We can, however, adjust the display so that negatives are dark
and positives are bright so we can discern the bit patterns. Notice that we
can “see past the noise” enough to discern bits in the noisy signal (right
graph).

Figure 11.3–7 (left) shows the CWT of the Haar-denoised signal. Notice how
well it agrees with the original binary signal (ref. Fig 11.3–6). We chose the
Haar wavelet because it looked like the binary signal. It is interesting to see
what would happen if we chose a wavelet that looked nothing at all like the
signal (or the noise). The right side of Fig. 11.3–7 shows the results of using a
Db20 “chirp” wavelet. The DWT (not shown) for the Db20 is also of no use.*

This is why conventional DSP falls short—especially with signals that do not
look sinusoidal and do not match the sinusoids of the Fourier Transform.

                                                
* In practice, if we are unsure about the shape of the signal we would start with a more general-purpose wavelet
such as the Db4. In this case, however, we can see portions of the binary signal and can tell up front that a Haar
wavelet would be an excellent choice but that a 20-point chirp wavelet (as used in the previous example) would
be a poor match to either the signal or the noise.
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Figure 11.3–7 CWT of Haar-denoised signal using the Haar wavelet at left clearly shows
the bits. At right, the CWT of the denoised signal using a Db20 wavelet is interesting-looking,
but gives no practical visual information.

11.4 Image Compression/De-noising

Compression and/or de-noising using wavelets are in wide use in image
processing. We saw an example of JPEG image compression earlier (ref. Fig.
1.9–4). While a full discussion of the use of wavelets in image processing is
beyond the scope of this book, we can provide a brief overview.

Image processing means two-dimensional processing. Instead of the simulta-
neous time/frequency capabilities of wavelets we are usually talking about
space/frequency or distance/frequency. In other words, a signal would have
various amplitudes as we vary the time while a monochromatic image would
have various brightness as we vary the position (space) on the image (e.g. “3
centimeters to the right and 4 centimeters down on the photo”).

To get our bearings we will look first at a simple 256-point split sine signal
and a single-level one-dimensional conventional DWT display as shown in
Figure 11.4–1 (top left graph). We will use the set of 4 Haar wavelet filters
(the H’ filter is used by itself to produce the CWT at top right). Notice that
the Details and Approximations at level 1 (D1 and A1) combine to produce
the original signal. Note also that both halves of A1 have high amplitudes
(like the original signal) while the left half of D1 has much smaller values
than the right half). This is of course because D1 represents the higher fre-
quencies while A1 represents the lower frequencies as we have discussed
(ref. Fig. 4.5–1).
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Figure 11.4–1 Single-level DWT of a split-sine signal using the Haar wavelet filters.

We next construct a 2-dimensional 256 by 256 image “test pattern” The first
128 rows will be identical copies of the above split sine signal. The image is
shown below in Figure 11.4–2 at left. Comparing with the 1-D signal we can
discern the tops of the 2 low-frequency sine waves (cycles) and the tops of
the 16 high-frequency sine waves as bright spots. We use a shorter 128 point
split sine signal with one low-frequency sine wave and 8 high-frequency sine
waves (not shown) to fill the lower half of the test pattern (right graph) by
constructing 256 identical columns each 128 points long. As with the longer
split sine test signal we can see the bright spots corresponding to the top of
the low-frequency sine wave (single cycle) and the 8 high-frequency sine
waves.

We now proceed with a single level two-dimensional conventional DWT of
this test-pattern image. Whereas the 1 level 1-D DWT would decompose the
signal into A1 and D1, the 2-D DWT converts the image into A1 (the lower-
frequency Approximation), H1 (a vertical scan yielding Horizontal compo-
nents), and V1 (a horizontal scan yielding Vertical components).*

                                                
* Some software also uses a diagonal scan and/or additional methods to further decompose the data at each level.
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Figure 11.4–2 Test Pattern produced by 128 identical rows of the 256-point split-sine sig-
nal (left image) followed by the addition of 256 columns of a shorter 128 point split-sine signal
(bottom half of complete test pattern image as shown at right).

Figure 11.4–3 shows the A1, V1 and H1 portions of the decomposed image.
The Approximation, A1, looks much like the original image (as did the 1-D A1
from Fig. 11.4–1 look much like the original signal). Just as the one-
dimensional D1 (right lower plot from Fig. 11.4–1) had very low values until
the signal changed to high frequency, the upper half of V1 (the center image
of Fig. 11.4–3 below) is dark for the first half then we can see the higher fre-
quency sine waves as vertical components from the horizontal scans.
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Figure 11.4–3 Single-level 2-D DWT of test pattern produces the lower frequency Approxi-
mation (A1 at left), the Vertical components from the horizontal scan (V1 in center) and the
Horizontal components from the vertical scan (H1 at right).
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The lower half of V1 is all dark because horizontal scans of the test pattern
in that area will produce constant values (whether bright or dark, the values
don’t change horizontally) and thus zero frequency. The vertical scans in the
rightmost graphic will also produce zero values (dark portions) until they en-
counter the high frequency portions of the shorter split-sine signal.

Similar to the 1-D cases, the image can be reconstructed by combining A1,
V1, and H1. If we do this without changing the components we will have per-
fect reconstruction. However, our goal here is to remove some noise, com-
press the signal or both.

Figure 11.4–4 shows the familiar “Barbara” image (left). We have taken a
200 x 200 pixel close-up to show the facial quality. Then we have added some
noise as shown at right. Notice particularly the “freckles” we have added
around the forehead, cheeks, and nose areas.

      

Figure 11.4–4 Classic “Barbara” image 200 x 200 close-up is shown at left. Noise is added
along with facial skin imperfections (“freckles”) to the “pure” image giving us the image at right.

We will now compress this image. Since compression often involves remov-
ing high frequency components we might expect a possible improvement in
skin quality (i.e. freckles and other skin imperfections less pronounced).
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Since this image is small (200 x 200) we will want to use a small wavelet
(filter). The 2-point Haar comes to mind. The result of a 9 to 1 compression is
shown in Figure 11.4–5 at left. Even after fine-tuning, the facial quality will
still be very poor. However, notice how the fabric of her scarf is very pro-
nounced. The Haar wavelet provides for good edge detection.

A better choice for her complexion would be a biorthogonal wavelet. We
choose the 7/9 wavelet because it is perfectly symmetrical and still short (9
points maximum filter length). The results of a 9 to 1 compression using this
biorthogonal wavelet is shown below at right. Notice her complexion has
cleared up considerably and that she now has a “softer” look.*

      

Figure 11.4–5 9 to 1 compression using a set of 2-point Haar filters is shown at left. The
same compression using a set of Biorthogonal 7/9 filters is shown at right.

We saw earlier how wavelets can be used to denoise a signal at specific time
intervals. Similarly, with wavelet image processing we can denoise specific
areas of an image. In the above example we could use heavier filtering on
the freckles areas and lighter filtering on the rest of the image.

                                                
* In the early days of Hollywood, long before Digital Image Processing, some older screen actresses would in-
sist upon a gauze “filter” stretched across the movie camera lens. This “soft” effect would hide wrinkles and age
spots. One young actress also insisted on this “soft” effect—not to hide wrinkles but to hide her freckles!



Chapter 11 - Case Studies of Wavelet Applications 241

© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

11.5 Improved Performance using the UDWT

So far in this chapter we have successfully used the conventional DWT for
de-noising and compression. As mentioned earlier, when we remove noise
we also remove part of the alias cancellation capability of the conventional
DWT. In the examples so far this has not been a problem but in this last ex-
ample we highlight a pathological case where aliasing is problematic and
show why the Undecimated DWT (UDWT) can provide better results.

Figure 11.5–1 (left graph) shows a generalized test signal that begins with
Frequency Shift Keying (FSK) and ends with Frequency Modulation (FM).
The FFT of this signal (right graph) shows the low and high frequency por-
tions (peaks) from the FSK modulation and from the linear FM modulation
(wide portions at low frequencies).
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Figure 11.5–1 Composite demonstration signal with FSK modulation followed by FM
modulation shown in the time domain at left and in the frequency domain at right.

We next add some high-frequency noise in the form of harmon-
ics/intermodulation effects. In other words, as the modulated frequency of
the original signal changes, so does the frequency of the noise. This is shown
in Figure 11.5–2
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Figure 11.5–2 Noisy composite demonstration signal shown in the time domain at left and
in the frequency domain at right.

As can be seen by comparing the FFT of the original signal to the FFT of the
noisy signal (right graphs of Figs. 11.5–1 and 11.5–2) we cannot isolate the
noise from the signal using conventional DSP filtering techniques. We turn
again to wavelet processing.

We use a “general purpose” set of Db4 wavelet filters and perform a conven-
tional DWT and a UDWT on the noisy signal as shown below in Figure 11.5–
3. As we compare the DWT and the UDWT displays we notice differences,
especially in the higher frequency sub-bands of D1, D2, and D3. Further-
more, the UDWT looks “cleaner” in isolating the sections of the signal. The
frequency allocation is the same for both the DWT and UDWT (ref. Fig. 11.1–
5) and the wavelet is the same (Db4) causing us to ask “Why the differences
in results from using the 2 methods?”

The answer, as we will demonstrate, is non-canceled aliasing in the conven-
tional DWT while the UDWT (which uses stretched filters instead of down-
sampling) has no such problems. We note in passing that the CWT (which
also uses the stretched “H’” filter) is the same for the DWT and the UDWT
customized displays (upper right graphs in both displays).

To better see what’s going on, we look at the center part of the signal by it-
self. We would do something similar to this “isolation in time” as we exploit
the time/frequency capabilities of wavelet processing to order to impose dif-
ferent thresholds on the various time segments of the signal (interval de-
pendent thresholds) as shown earlier in this chapter (ref. Figs. 11.1–6 and
11.2–5).
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Figure 11.5–3 Db4 wavelet decomposition of the noisy composite FSK/FM signal using a
convention al DWT at left and an Undecimated DWT at right.

Figure 11.5–4 shows the center 256 points of this 512 point noisy signal. It is
composed of a 0.3 Nyquist sinusoid with a 0.75 Nyquist sinusoid as the noise.
Before proceeding, we note that this center portion of this FSK/FM noisy
signal is a stationary signal in that it does not change frequencies or ampli-
tude (envelope) over time. If the entire 512 points of the signal looked like
this we would be better off using a sinusoid as the “wavelet”—in other words
to use conventional Fourier techniques instead of wavelet processing. How-
ever, since this “sum of sines” can occur, even for a very short time,* in a
large number of ways and in a variety of signals we will proceed.

Another glance at the frequency graph from Fig. 11.5–4 below (also ref. Fig.
11.1–5) shows the frequency subband D1 to be roughly from 0.5 to 1.0
Nyquist and the subband A1 to be from roughly 0.0 to 0.5 Nyquist (with some
overlap due to the imperfect filtering of the Db4). Because the signal at 0.3
Nyquist is well-isolated from the noise at 0.75 Nyquist it appears that the
signal should be found in A1 with a minimal amount in D1 while the noise
should be found almost entirely in D1 with minimal amounts in A1. A single-
level DWT or UDWT should show this.

                                                
* Although a Short Time Fourier Transform (STFT) could be used for stationary portions of a signal, if the
time is too short we won’t achieve meaningful results. The Wavelet Transforms are a better choice here.
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Figure 11.5–4 Center 256 points of noisy 256-point signal shown in both the time and fre-
quency domains.

As a “sanity check”,* we will first look at a single-level decomposition of the
noiseless signal by itself using both the conventional (decimated) DWT and
the Undecimated DWT (UDWT). Figure 11.5–5 shows the single-level DWT
and then the UDWT displays for the noiseless signal. The signal is found al-
most entirely in A1 for the UDWT with very little in D1 (note different
scales) as expected. But the conventional DWT has much more high-
frequency components in D1. We will show that this is not due to noise, but
instead actually due to the aliasing of the noiseless signal!
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Figure 11.5–5 Results of a single-level decomposition of the pure signal with no noise using
a Db4 filter set. Conventional DWT results are compared with UDWT results.

                                                
* Some would argue that it will take more than this simple check to establish the author’s sanity—but it is a
good idea when faced with puzzling results to look at the basics and build from there.
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The block diagrams for the single-level conventional DWT and the UDWT
are drawn again in figure 11.5–6. We can see the potential for aliasing from
downsampling in the Conventional DWT here.
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Figure 11.5–6 Single-level Conventional DWT and Undecimated DWT. The 2 are identical
(for the single level case) except for the lack of downsampling (decimation) by 2 in the UDWT.

A look in the frequency domain will illustrate the problem. Figure 11.5–7
shows the noiseless signal after the single-level decomposition using a Db4
UDWT. As expected, most of the 0.3 Nyquist signal is found in A1 (left
graph). Because of imperfect filtering we have a small amount of the signal
in D1 (right graph). Note the difference in scales however with A1 contain-
ing almost 9 times the signal content of D1.
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Figure 11.5–7 Frequency domain results for the Undecimated (non-downsampled) UDWT
noiseless pure signal. A1 (left graph) contains the signal at 0.3 Nyquist with no noise as ex-
pected. D1, as shown in the right graph, contains some small aliasing due to imperfect filtering.
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We next look at frequency domain results using the same noiseless signal in
the A1 and D1 subbands produced by the conventional DWT as shown in
Figure 11.5–8. The results show aliasing present in both A1 and D1. Recall
from DSP that for a signal at 0.3 Nyquist aliasing from downsampling will
“reflect” the signal across Nyquist. Thus we see the aliasing components at
Nyquist minus 0.3 Nyquist or 0.7 Nyquist. This is not to be confused with our
earlier noise at 0.75 Nyquist—there is no noise in this sanity check! In other
words, this alias artifact will appear even in a noiseless signal.
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Figure 11.5–8 Frequency domain results for the conventional (downsampled) DWT of the
noiseless pure signal. A1 (left graph) has aliasing components at (1.0 – 0.3) = 0.7 Nyquist. D1
(right graph) also has magnitude 40 aliasing components at 0.7 Nyquist .

Notice from the above figure 11.5–8 that the signal at 0.3 Nyquist has the
same components (magnitude 120 in A1 and 14 in D1) as with the UDWT
case (ref. Fig 11.5–7). Notice also the aliased components at 0,7 Nyquist
(magnitude 40) are the same size! This is important because when we add A1
to D1 in the conventional DWT these components cancel. But when we
throw away D1 to get rid of some high frequency noise (added later) we are
also throwing away the alias cancellation components and we are left not
only with the 0.3 Nyquist signal but also a substantial 0.7 Nyquist alias arti-
fact. Note: We have shown only the magnitudes of the (complex) signal here.
We will discover in the next chapter how the aliased components in A1 and
D1 are 180 degrees (π radians) out of phase and thus cancel.

Having demonstrated the superior performance of the UDWT on the noise-
less signal, we now compare the DWT and UDWT on the signal (center por-
tion of the FSK/FM) with added noise. With the signal at 0.3 Nyquist and the
noise at 0,75 Nyquist (ref. Fig. 11.5–4) we will look at the results of keeping
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A1 while discarding D1. A look at the frequency domain of the UDWT A1 and
D1 in Figure 11.5–9 below shows this to be a viable option for this particular
signal.
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Figure 11.5–9 Frequency domain results for the UDWT noisy signal. A1 (left graph) con-
tains almost all the signal at 0.3 and very little of the noise at 0.75 Nyquist. D1 (right graph)
contains almost all the noise and very little of the signal.

However, a look at the conventional DWT A1 and D1 in the frequency do-
main indicates that this option of keeping A1 as the “de-noised” signal is not
viable because of aliasing problems caused by the downsampling. This is
shown below in Figure 11.5–10
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Figure 11.5–10 Frequency domain results for the conventional (downsampled) DWT noisy
signal. A1 (left graph) contains the signal at 0.3 Nyquist along with significant aliasing effects.
D1 shows the added noise at 0.75 Nyquist along with further aliasing effects.
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We can now compare the results of denoising using the conventional DWT
with those of the UDWT for this stationary portion of the noisy signal using a
single-level Db4 wavelet transform (keeping A1 and discarding D1). We saw
A1 in the frequency domain earlier in Figs. 11.5–7 and 11.5–8. We now take
a look in the time domain. Figure 11.5–11 shows a close-up of the original
noiseless signal and the same signal with noise added.
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Figure 11.5–11 Close-up in time domain of original and noisy signals.

Figure 11.5–12 shows a close-up of the de-noised signal using the conven-
tional DWT and the same signal denoised using the UDWT.* As can be seen,
the UDWT does an almost perfect job of de-noising even using a single-level
transform in this pathological (but very possible) case. The conventional
DWT will need additional levels, a longer wavelet, and/or further processing.

We can of course use the UDWT to denoise the rest of the 512 point FSK/FM
signal. Because the conventional (decimated) DWT is in such wide use, it
would be a good idea to better understand and utilize it correctly! Thus, we
will look in more depth at how the alias cancellation works within the con-
ventional DWT in the next chapter.

                                                
* Another reminder that the Undecimated DWT is also referred to as Redundant, Stationary, Quasi-Continuous,
Translation Invariant, Shift Invariant, and Algorithme à Trous in some texts, papers, and software.
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Figure 11.5–12 Close-up in time domain of conventional DWT de-noised signal (left) and
UDWT denoised signal (right).

Andrew P. Bradley in his landmark paper “Shift-invariance in the Discrete Wavelet
Transform” * reminds us “It should be noted that the aliasing introduced by the
DWT cancels out (only) when the inverse DWT (IDWT) is performed using all of the
wavelet coefficients, that is, when the original signal is reconstructed”. He offers
several suggestions (besides exclusive use of the UDWT) including (1) using
longer filters with better frequency resolution and (2) creating a hybrid that
uses the UDWT at some levels to prevent non-canceled aliasing and using
the conventional DWT for improved speed and storage efficiency.

11.6 Summary

In this chapter we explored and demonstrated some of the capabilities of
wavelet processing techniques using specific examples. We first added white
noise to a chirp signal and then removed the (supposedly unknown) noise
using a Db6 conventional DWT and exploiting the time/frequency capability
of wavelet processing. We employed a somewhat similar process using a
Db20 chirp wavelet to find a binary signal buried in 80 dB of noise from a
chirp jammer.

Our next case was a 16 chip per bit binary signal with intermittent pseudo-
random noise. The best match to the binary signal was a Haar wavelet. Per-
forming a 7-level conventional DWT on the noiseless signal we saw there
were no components of the noiseless signal in D1 through D4. Thus any-

                                                
* Proc. VIIth Digit. Image Comp., Dec. 2003, pp. 29–38.
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thing found in D1 through D4 would be noise and could be safely discarded.
We were thus able to re-create the original binary signal enough to discern
the binary values (+1 or –1). We also revisited the CWT for this example and
demonstrated its capability.

We demonstrated image compression on first a test pattern and then using a
subset of the “Barbara” image. We added some noise in the form of skin im-
perfections (freckles). By thresholding the levels (in two dimensions) we
were able to compress the image by almost an order of magnitude and in the
process selectively remove high frequency components. The final image had
a “soft” look that removed the skin imperfections. The wavelet filters of
choice were those of the Biorthogonal 7/9, chosen for their symmetry and
short length. We used a Haar for comparison and obtained better edge detec-
tion but far worse skin quality.

In the last example, we featured a case where de-noising using a UDWT was
superior to using a conventional DWT. In both the DWT and UDWT a Db4 set
of filters and a single level decomposition was used. The problem was shown
to be with the conventional DWT itself. In real-life Digital Signal Processing
we can get aliasing when we downsample. The (conventional downsampled
or decimated) DWT cancels aliasing, but when we throw away parts of the
decomposition (D1 for a single-level DWT) we also lose the alias cancellation.
Alternatives include (1) using the Undecimated DWT exclusively; (2) using
the UDWT for part of the decomposition; and (3) using a longer wavelet with
better frequency resolution or (4) checking first to see if the values in the
Details (for a given length of time or space) are close enough to zero that
they can be safely suppressed for that interval.

In all these cases, conventional DSP methods with filtering and/or FFT
methods would not work. A Short Time Fourier Transform might work on
some of these examples but the dynamic nature of wavelets usually make
them a better option. Also, in every case we tried to match the wavelet to ei-
ther the signal or noise for best discrimination.

With these examples under our belt we can take a closer look at the alias-
cancellation methods used in the conventional DWT and gain further concep-
tual understanding and, hopefully, increased wisdom in using the various
wavelet transforms.


