INDEX

A

A' Trous Transform (Algorithme A' Trous). See also Conventional DWT
named for trousers with holes, 23,50 , 124-128
Acoustic Piano, 9, A12, B2-B3.

See also STFT

Alias cancellation. See also PRQMF
demonstrated in the frequency domain, 261-271
demonstrated in the time domain, 251-260
found in biorthogonal wavelet filters, 214, 218
found in orthogonal wavelet filters, 203-214
jargon alert, 25
related to "traditional" equations, 271-279
requires "inverse DWT", 298
using PRQMF, 106, 122
Aliasing in the conventional (decimated) DWT, 20-30, 60-64, 129-140, 174, 241-250, C8
Analysis portion of transforms. See Decomposition
Analysis signal, 12, C3. See also Fast Fourier Transform (FFT)
Analysis wavelet, 13. See also Continuous Wavelet Transform (CWT)
Analysis, multi-scale, 161
Anti-symmetric wavelets, 156, 191, 203, 205-218
Anti-symmetric sine function, 201
Approximation (as used in wavelets)
coefficients, 21, 25, 44-71, 126-134, 298
in case studies, 223-238
in the conventional (decimated) DWT, 70-77, 106-116, 131-132
in the Undecimated DWT, 21-22, 44-45, 51-60
in the Wavelet Packet Transform (WPT), 137-138
jargon alert, 21
related to key equations, 290, 296
resembling the scaling function, 180
shown in FFT format, A4-A5
Audio Fourier transform, A12. See also
Sheet music, Acoustic piano
Avionics, analogy to wavelets, 187

B

B-spline wavelets. See Complex frequency b-spline wavelets
Bandpass filters
as related to "mother" wavelet, 15
Mexican hat example, 89-96
Morlet example, 89-97
bandpass width, 194
basic and stretched Haar and Daubechies filters, 110-120
biorthogonal and reverse biorthogonal example, 214
complex frequency b-spline, 200
crude wavelets are bandpass, 188-189
discrete Meyer example, 212
Meyer example, 193-194
Shannon example, 194-196
Bandshifting, 194, 196, 217-218
Barbara, image processing test image, 239-250
Basis functions, 15, 156, 175
Basis vectors, 155, 167
Best basis, 139, 174
Biorthogonal wavelet (filters)
built by upsampling and lowpass filtering, 116-117
can be constructed from splines in time domain, 215
© 2009 Space \& Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com
estimation of "continuous" wavelet using
interpolated filters, 6, 117-118, C10
frequency characteristics, 118
general description, 5-6, 161-169, 214-216
halfband filters also produced by biorthogonal, 147, 161-165
interrelationships of the filters, 163
linear phase, 166, 214, 218
orthogonality relationships, 164-166
properties in table form, 219
terminology (bi-orthogonal) compared to
American Bi-centennial, 163
two sets of symmetric, different length wavelet filters, 28
used in JPEG, FBI, and other image
compression, $28-29,166,240$, C8-C10
Black and white television, 43
Block averager, differentiator, 56-57, 106.
See also Haar wavelet
Brickwall filtering, 170

C

Caffeinated Coffee, 43, 125. See also DWT
Cartesian coordinates. See also
Orthogonality
basis vectors, 155,161
streets of Salt Lake City, 203
Center frequency, 95-120, 188-201
Chips per bit, 72
Chirp jammer, 134, 225-228. See also Signals, chirp
Chirp wavelet. See Daubechies wavelet filters (DbN)
Chirping, 122, 171. See also Signals, chirp
Clipping, 221
Coiflet wavelet (filters)
applications, 5, C10
built by upsampling and lowpass
filtering, 116
estimation of "continuous" wavelet using
interpolated filters, 6, 117, 210, C10
frequency characteristics, 118
general description, 209-211
named for Ronald Coifman, 209
nearly symmetrical, 209
orthogonality relationships, 209
properties in table form, 219
Compact support, 169, 188-218, 285
Comparing signals with sinusoids, $7,11-12$, 174, A6-A9, C1-C3
Comparing signals with wavelets, 7-36, 136, A9-A11, C3-C9, D6. See also Correlation
Complex frequency b-spline wavelet (filters)
b-spline terminology, 200
connected polynomials (splines), 218
constant Q behavior, 200
equation generates discrete points, 198
frequency characteristics, 199-200
general description, 198-200
jargon alert, 200
properties in table form, 219
relationship to Shannon wavelet, 198
used in isolating desired frequencies, 199
Complex Gaussian wavelet (filters)
applications, 203
derivitives and order, 203
equation generates discrete points, 201
frequency characteristics, 218
general description, 201-203
jargon alert, 203
properties in table form, 219
theoretical "continuous"
wavelet, 202
Complex Morlet wavelet (filters)
applications, 201
better frequency resolution in longer filters, 218
equation generates discrete points, 201
general description, 201
properties in table form, 219
theoretical "continuous" wavelet, 201
Complex numbers, tutorial, 267
Compression. See also Denoising
alias cancellation loss, 297
case studies, 235-240
in music, 10
© 2009 Space \& Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

JPEG image compression, 28-29, 134, 166, 215
simultaneously in time and frequency, 19-23
using conventional DWT, 26-30, 131-134, C9
using Haar wavelet filter, 64-70
using Undecimated DWT, 43-58, 126, 260, C8
with biorthogonal wavelets as basis, 166, 214-215
with orthogonal wavelets as basis, 161, 203-207
Constant Q behavior, 96-97, 189-218
Constituent sinusoids, 7
Constituent wavelets, 13, 154-166
Continuous scaling function (theoretical), 281-288, A5
Continuous wavelet function (theoretical), $113,119,281-294$
Continuous Wavelet Transform (CWT)
comparison with FFT and STFT, A2-A9
customized wavelet use in, 171, 174
CWT values identical to some coefficients
in conventional DWT, 128, 135-137
displays, 16-18, 37-40
generalized equation, 15
inverse CWT (ICWT), difficulties in a many-to-one operation, 123
list of CWT-only wavelets, 219
more "redundant" than Redundant DWT (RDWT), 52, 129. See also UDWT
related to correlation values, $14-15, \mathrm{C} 3$
sanity check using CWT first, 123
scale as used in CWT processing, 86
step-by-step example using Haar wavelet (filter), 31-42
strengths and weaknesses, 121-124
stretched wavelet filters in CWT (and UDWT), 26, 170
theoretical reconstruction (synthesis) portion, 123
uses only highpass decomposition filter and stretches it, 86, 99-114
what is "continuous" about the CWT, 19, 123
Conventional (decimated) Discrete Wavelet Transform (DWT). See also Aliasing
a first glance, 24-29
alias cancellation demonstrated in frequency domain, 261-271
alias cancellation demonstrated in time domain, 251-260
aliasing not canceled, 249, 297. See also Aliasing
compared with Undecimated DWT, 124
creates miniature scaling function artifacts, 290-291
creates miniature wavelet function artifacts, 295-296
decimation implied, 125
decomposition portion, 24,60 , 124-144, 298
display, 70-76, 243-244
examples of use, 222-241
fast wavelet transform (terminology), 298
forward and inverse DWT (terminology), 296-298
frequency allocation diagram, 68-74, 224
inverse DWT (IDWT) unusable alone, 24
reconstruction portion, 24,60 , 124-144, 295-298
relating DWT to CWT, 135-140
shrinking the signal, 129-135, C8
step-by-step walk-through using the Haar wavelet, 59-77
three more basic filters used in DWT than in CWT, 109, 111
Convolution, See Correlation
Correlation
convolution same as correlation with PRQMF, 34-51, 126-129, 143-144, 158, 252-253
correlation coefficients, 15,175, A9-A12
correlation value, 11-15, 42, 252-258, C1-C5
correlation with unit basis vectors, 155
correlations with sinusoids, 7, 11-12, A6A9, C1-C2
correlations with wavelet (filters), 1-5, 13-59, 83-99, 122-190, A6, A9-A12, C3-C8
cross correlation, 34, 136, 156-178, 212-213, A10-A11. See also
Correlations with wavelets
form of comparison, 1-7, 32-36, 136, C8
matching the wavelet filter, $5,14-16$, 90-99, 169-173, 197-235, A11-A12, B3, C3-C4
single-point correlation, A6. See also Dot Product
Cost functions, 174, 185
Crude wavelets (filters), 219
crude (complex) wavelets, 194-203
crude (real) wavelets, 188-194
crude wavelets not continuous, 188
discrete points from an explicit equation, 4-6, 83-98, 188-201
jargon alert, 4
Customized wavelets, 171, 174
Cutoff frequency, 80-83, 98, 194, 197
CWT. See Continuous wavelet transform

D

Daubechies wavelet (filters) DbN
abbreviation Db, not dB, 226
appending equispaced end zeros for perfect fit to filters, 4-5, 115-116, 205, 287, C9
applications, 18, 111, 175-183, 207
built by upsampling and lowpass filtering, 112-117
chirp wavelet, 206
estimation of "continuous" wavelet using interpolated filters, 4-6, C10
four "magic numbers" of Db4 wavelet filter, 111, 114, 153-154, 183-184 285
frequency characteristics, 117-118
general description, 205-207
halfband filters from wavelet filters, 142
named for Ingrid Daubechies, 226
non-linear phase, 206
numerical integration to obtain desired filter length, 113-114
orthogonality relationships, 155-167, 183, 203-204, 219, A6
producing Daubechies filters from half band filters, 150-154
properties in table form, 219
referred to as " $\mathrm{Db}(\mathrm{N} / 2)$ " in MATLAB, 111
smooth (regular) for large N, 227
stretching ("scaling" or "dilation) to
match signal, 18
support width (length), 120, 205
Decimation by two, 24-25 59-62, 124-133, 245, 261-263, C8. See also Downsampling
Decomposition (Jargon Alert), 21. See also
CWT, DWT, UDWT and WPT
Deconvolution, 147, 169, 208
Delta function. See Kronecker delta function
Denoising. See also Compression
alias cancellation loss, 297
case studies, 222-240
in music, 10
simultaneously in time and frequency, 19-23
using classical FFT, A4-A13, C7
using conventional DWT, 26-28, 131-134, C8-C9
using Haar wavelet filter, 58, 64-78
using Undecimated DWT, 43-55, 126, 240-260, C8
with biorthogonal wavelets as basis, 152-163, 214, 221
with orthogonal wavelets as basis, 156 , 161, 203-204
Details (as used in wavelets)
case studies, 180-181, 223-224, 228, 232-233, 236
coefficients, 21, 44-52, 60, 127, 131, 135
definition, 21
in the conventional DWT, 70-77, 131-132, 136
in Undecimated DWT, 21-22, 44-58, 126
in the WPT, 137-138
looking like the scaling function,
© 2009 Space \& Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com
related to key equations, 296-298
shown in FFT format, A4-A5
DFT. See Discrete Fourier Transform
Digital Image Processing using wavelets.
See also specific wavelets
symmetry, 163, 166, 206-209, 214-218
soft effect using wavelets, 240
soft effect using gauze, 240
compression, 10, 28-29, 161, 166, 236-
240, C1, C9. See also JPEG
denoising, 10, 28, 137, 161, 236-240, C1
Dilation
as either stretching or shrinking the wavelet, 3
by interpolation, 82-86, 106, 196
constituent wavelets, 161
dilation equation, 281-295
dyadic dilation, 19. See also DWT
in the Undecimated DWT, 125
jargon alerts, 3, 19
to match the desired event, $5,15-16$, 170, A10-A11
Discrete Fourier Transform (DFT). See Fast
Fourier Transform (FFT)
Discrete Meyer wavelet (filters)
can be used in both CWT and DWT, 212-214
estimation of "continuous" wavelet using interpolated filters, 212
frequency characteristics, 212-213
general description, 211-214. See also
Meyer wavelet
orthogonality relationships, 212-213
properties in table form, 219
Discrete Wavelet Transform (DWT). See Conventional (decimated) DWT
Doppler shift, 122. See also Kinematics
Dot product, 155-185, 204-217, 254-255, A6-A11. See also Correlation
Downsampling. See also Upsampling, DWT, and Aliasing
by two. See Decimation by two
dyadic, 24, 129
in LTI systems, 259
jargon alert, 24
keeping odd or even values, $61,124,253$
number of coefficients reduced by, 26, 70
producing artifacts, 291, 296
shift-variant, 260
shrinking the signal, 24-26
DWT. See Conventional (decimated)
Discrete Wavelet Transform

E

Effective length (effective support), 84-98, 169, 188-202, 217
Einstein, Albert, ii, 142, 301

F

Fake wavelets, 122, 169-178. See also Morlet wavelet (filters)
Fast Fourier Transform (FFT). See also Short Time Fourier Transform (STFT)
audio FFT, A12-A13. See also
Acoustic piano
basis functions, 15
better choice than wavelets for stationary signals. See Signals, stationary
comparisons (correlations) with "stretched" sinusoids, 7-13, A6-A9, C2-C3
forward and inverse FFT (FFT and IFFT), 7, 20, 67, 103, 297
frequency domain, $7,10,79-80,198-219$, 245-248, 261-271, 296-297, A3
functionally equivalent to Discrete Fourier Transform (DFT), 1, 20, 297-298
generalized equation, 12
notch filter, 170, 225
pathological case using FFT, A1-A2
product of FFTs. See Spectral factorization
radix two FFT, 131
relation to STFT, B3-B5
results of FFT shown in Continuous Wavelet Transform (CWT) format, A3-A4
sampling at Nyquist frequency, 251
using cosine for real values, 87
wavelet terms Approximation and
Details shown in FFT format, A4-A5
wavelets better choice than FFT for non-
stationary signals. See Signals, nonstationary
Fast wavelet transform. See DWT
Father wavelet, 15, 292. See also
Mother wavelet
FBI fingerprints. See Biorthogonal wavelet (filters)
Filters. See also Wavelet filter list, 219
filter bank, 20-26, 251-259. See also PRQMF
finite length filters. See Compact support
highpass decomposition filter, 21, 44, $125,143-145,164-165,204-216,271$
highpass reconstruction filter, 21, 44, 106-116, 145, 164-165, 204-219, 271, 291-295
lowpass decomposition filter, 44, 126, 142-145, 158-165, 204, 271
lowpass reconstruction filter, 21, 44,
106-127, 162-164, 204, 271-296
passband, 46, 82, 96-97, 111, 193-197.
See also Constant Q
perfect reconstruction. See PRQMF
scaling function filter. See Filters, low pass reconstruction
stopband, 48
transition band, 48-54, 81-90, 117-120, 197
upside down or differing by a sign, 116
wavelet function filter. See Filters, high pass reconstruction
Frequency b-spline wavelets. See Complex frequency b-spline wavelets
Frequency domain. See Fast Fourier Transform
Frequency sub-bands. See DWT, UDWT, and WPT (frequency allocation)
FSK/FM. See Signals
Fugal bugle, 161. See also Denoising

G

Gaussian wavelet (filters)
applications, 192
derivatives of Gaussian, 191
frequency characteristics, 199
general description, 191-192
properties in table form, 219
regular, smooth, and symmetrical, 192
theoretical "continuous" wavelet, 6, C10
used with CWT but not DWT, 192
Gaussian wavelet. See Complex Gaussian wavelet
Global Positioning System (GPS), 122, 171

H

Haar wavelet (filters)
antisymmetric with linear phase, 47, 205-206, 218
applications, $5,170,207-235, \mathrm{C} 10$
details coefficients identical to CWT values, 128,136
discontinuities in, 5, 109, 172, 204
display of signals using, 235-240, 249-250
dual of the Sinc (Shannon) wavelet, 197
frequency characteristics, 110-111, 142
general description, 204-205
halfband filters from wavelet filters, 126, 146
have 2 filter points, named "Db2" in most literature, $106,112-120,160$, 172, 176, 206
interpolation (stretching) by upsampling, lowpass filtering, 106-107
interrelationships of the four PRQMF filters, 143-153
mapped onto a Support width (length) of one, 108, 204-205
named for Alfred Haar, 90, 106
numerical integration to obtain desired filter length, 109-110
one vanishing moment, 204, 218-219
orthogonality relationships, 160-161
© 2009 Space \& Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com
properties in table form, 219
shortest, simplest of both Daubechies and biorthogonal wavelets, 5, 31, 205
step-by-step conventional DWT example using, 59-78
step-by-step CWT example using, 31-42
step-by-step Undecimated DWT example using, 43-58
theoretical "continuous"
wavelet, 6, 108, C10
Halfband filters, 20-21, 46-54, 141-166 See also PRQMF, Phase, Orthogonal, and Biorthogonal
Heisenberg uncertainty principle and Heisenberg boxes, 197, B1-B5
Hubbard, Barbara B. 152, D3

I

Ideal lowpass filter, 79
Inner product. See Dot product
Integration interval (time), 8, A2-A3, B1-B4
Interpolation
adding points for lower cutoff frequency, 82-83
stretching (dilating) filter, 98, 196-200
wavelets built by upsampling and lowpass filtering, 4, 101-127, 177, 204-222, 282-300
Inverse FFT, CWT, UDWT and WPT. See FFT, CWT, UDWT and WPT

J
JPEG, 28-30, 134, 166, 207, 215, C9. See
also Biorthogonal wavelets

K

Kinematics (orbital), 122, 171
Kronecker delta function, 146-150, 251-270

L

Lifting scheme, 174-175
Linear time invariant (LTI) system, 64, 132, 148, 259. See also DWT and Downsampling

Lyons, Richard G., 152, D1, D3-D4

M

Mapping of wavelet filters to compact support width, 109, 113-116, 157-160, 283-285
Matched filter, 169, 171. See also Correlation, matching the wavelet
Matching pursuit. See Best basis
Mathematical Microscope, 217
MATLAB software routines
bior, 28. See also Biorthogonal wavelet (filters)
cmor, 201. See also Complex Morlet wavelet (filter)
coif, 116-118. See also Coiflet wavelet
conv, 34-37, 43, 158, 216. See also Correlation, same as convolution with PRQMF
cwt, 41. See also Continuous Wavelet Transform
$d w t, 71$. See also DWT
dyaddown, 61-66. See also Downsampling, dyadic)
dyadup, 62-64, 71. See also Upsampling, dyadic)
fbsp, 199. See also Complex frequency b-spline wavelet (filters)
fft, 1. See also Fast Fourier Transform
fir1, filter design using window method, 119
firls, filter design using least squares method, 150-153
haar, 39, 41, 205. See also Haar wavelet (filters)
mexh, 4, 84-91, 189. See also Mexican hat wavelet (filter)
morl, 90-93. See also Morlet wavelet (filter)
roots, finds roots of polynomial, 152, 167
shan, 194-198 See also Shannon wavelet
swt, 134. See also Stationary Wavelet Transform
© 2009 Space \& Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com
wkeep, trims data, usually to original signal length, 35-37
xcorr, 34. See also Correlation, cross correlation
Median filtering, 228-229
Mexican hat wavelet (filters)
applications, 189
crude wavelet used in CWT only, 219
CWT display using split-sine signal, 90
discrete points generated from equation, 4, 85
effective support (length), 84
example of stretched crude filter, 84-87
frequency characteristics, 95-98
general description, 189
human eye experiment, 189
properties in table form, 219
sombrero shape, 84
theoretical "continuous" wavelet, 6, C10
Meyer wavelet (filters)
discrete points generated by frequency domain equation, 192-194
frequency characteristics, 193
general description, 192-184
named for Yves Meyer, 192
properties in table form, 219
used in CWT to isolate events by
frequency, 194. See also Discrete
Meyer wavelet
Millennial transform, 6-7
Morlet wavelet (filters)
applications, 190
compared to "fake" wavelet, 172-173
considered as "original wavelet", 90
discrete points generated by continuous
equation, 192
effective support, 91
formulated by Jean Morlet, 90
frequency characteristics, 94-98
general description, 190
infinitely regular, 172,184
modified Gaussian, 190
properties in table form, 219
stretching of this crude filter, 90-94
symmetrical, 192
Mother wavelet, 15-18, 99--112, A11. See also Bandpass filters
Moving averager. See Block averager
Moving differentiator. See Block differentiator
Multirate system, 187, 251. See also Filters, filter bank
Multiresolution analysis, 187. See also Filters, filter bank

N

Natural order of time and frequency, B1-B3. See also Heisenberg
No distortion equation, 271-272. See also Halfband filters and Alias cancellation
Numerical integration, differentiation, 109-120, 191. See also Haar and Daubechies wavelets

0

Octaves. See Sheet music
Orthogonality. See also specific wavelet integer orthogonal, 158-159, 255
orthogonal basis, 155-156, 159
orthogonal sinusoids, $12,156,161$, C2
orthogonal system and vectors, 155-156
orthogonal wavelets, 156-166, 203-214, 219. See also Biorthogonal
orthonormality, 15, 158-166, 255

\mathbf{P}

Perfect overlay of filter points on "continuous" wavelets, 4-5, 115-116, 205, 215-217, 283-293, C9
Perfect Reconstruction Quadrature Mirror Filters (PRQMF), 26, 140-144, 256-277. See also Alias cancellation
Perfect reconstruction, 21, 52-57, 63-64, 132-133. See also PRQMF
Phase
linear in halfband filters, 47-48, 145-148
linear in symmetric wavelets, 47, 95-97
shifting, 12, 156, 264-279. See also
Aliasing
wavelet phase properties, 219
Pianoforte. See Acoustic Piano
Planck's Constant, 197, B3. See also
Heisenberg
PRQMF. See Perfect Reconstruction
Quadrature Mirror Filters
Pseudo frequency, 2-3, 15-16, 95

Q

Quasi-continuous wavelet transform. See UDWT

R

Radix two. 123, 131, 297
Reconstruction (Jargon Alert), 21. See also
CWT, DWT, UDWT and WPT
Recursion, 288
Redundant DWT. See UDWT
Regularity, 2, 168-219
Resemblance index. See Correlation coefficients
Reverse biorthogonal wavelet (filters) applications. See Biorthogonal wavelets estimation of "continuous" wavelet using interpolated filters, 216
frequency characteristics. See
Biorthogonal wavelets
general description, 216-217
orthogonality relationships. See
Biorthogonal wavelets
properties in table form, 219

S

Scaling (stretching), 3, 10-18, 35-42, 104, 121-136, A2-A5, A10-A12, C6. See also Dilation
Shannon (complex) wavelet (filters)
constant Q behavior, 198
crude wavelet used in CWT only, 198
discrete points generated by continuous
equation, 194-196
dual of the Haar wavelet, 197
frequency characteristics, 195-197
general description, 194-198
lowpass real filter made complex bandpass, 194, 218
properties in table form, 219
theoretical "continuous"
wavelet, $6,195-196, \mathrm{C} 10$
used in finding specific frequencies, 5 , 198, C10
Sheet music comparison with wavelet display, 8-9, B2
Shift invariant system. See Linear time invariant
Shift invariant wavelet transform. See UDWT
Shift variant transform. See Conventional DWT
Shifting the wavelet. See Translation
Short Time Fourier Transform (STFT). See also Integration interval and FFT
audio STFT, A12
case studies, 231,243 , B5
compromise between time and frequency information, 8
constrained to fixed Heisenberg boxes, B3-B4
results shown in CWT format, A2-A4
Shrinking and Stretching. See Dilation
Signals
binary, 27-28, 72-78, 170, 225-236
BPSK, 225
chirp, 121, 170, 221-223, B4-B5
city skyline, 182
embedded pulse, 11-16, 55, C1-C6
FSK/FM, 241
signal identification, 122
jargon alert, 1
non-stationary, 1, 30, 77, 297, B5
split sine, 87-95, 122, 171-173, 236-239
stationary, 1-2, 71-77, 170-174, 243256, A2-A6
Sinc function, 5, 79-83
Sinc wavelet. See Shannon wavelet
Single-point correlation. See Dot product
© 2009 Space \& Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

Skin imperfections. See Digital Image
Processing, denoising
Slew. See Kinematics
Sliding the wavelet, See Translation
Slinky toy, demonstrates stretching (scaling) and frequency, A10
Smith, Steven W., 152, D1, D5
Smoothness. See Regularity
Spectral Factorization, 111, 152-153
Spline wavelets. See Complex frequency b-spline wavelets
Sport of basis hunting, 174, 195, 219
Star Trek terminology, 219, A5
Stars and Stripes Forever, 8-9. See also Integration time
Stationary wavelet transform. See UDWT
STFT. See Short Time Fourier Transform
Superfilters, C8. See also UDWT, stretching the wavelet
Support width, 204-205. See also Compact support
Symlet wavelet (filters)
applications, 209
estimation of "continuous" wavelet using interpolated filters, 208
general description, 207-209
nearly symmetrical, 209
orthogonality relationships, 209
properties in table form, 219
Symmetry, 5, 29, 47, 145-167, 188-222, C9-C10
Synthesis portion of transforms. See Reconstruction

T

Table of wavelet (filters) properties, 219
Thresholding, See also DWT, examples
case studies, 27-29, 135
for a specific time and a specific frequency, $27,78,135$
interval dependent thresholding, 27, 77, 135, 224-242
jargon alert, 27
reverse thresholding, 226-230

Time-reversed filters. See PRQMF
Time/frequency analysis, 9, 197, 223-231, 242, B1-B5, C6
Transforms. See CWT, DWT, FFT, UDWT, WPT and Millennial Transform
Transient signal, 1, 122, 134, 169-175, 205. See also Signals, non-stationary

Translation (shifting)
dyadic translation, 157, 164
in conventional DWT, 130
in CWT, $5,13-19,32-36,122,201$, A9-A11, C4-C5
in Undecimated DWT, 56-57, 125, 134, 157-161, 174
jargon alert, 6
wavelet terminology for shifting or sliding, 6, A5
Translation Invariant Wavelet Transform. See UDWT
Tube-type amplifiers and clipping, 231
Two-channel Quadrature Mirror Filter Bank. See Conventional DWT
Two-scale difference equation (background), 283-284. See also Dilation, equation

\mathbf{U}

Undecimated Discrete Wavelet Transform
(UDWT)
a first glance, 19-24, C8
case studies, 241-249
comparison with conventional
(decimated) DWT, 124, 144, 243-245
decomposition portion, 20-21, 124, 144
frequency allocation diagram, 68-74, 224
hybrid UDWT/DWT, 249
other names for, $124,134,248$
pathological DWT case solved by UDWT, 241-249
reconstruction portion, $20,124,127$, 144, 149
relating UDWT to CWT, 124-140
scales and levels (terminology), 120
step-by-step walk-through using Haar wavelet, 43-58
© 2009 Space \& Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com
stretching the wavelet, 107, 124-129
three more basic filters than in CWT, 144
UDWT display, 243-244
Upsampling. See also Downsampling and
Conventional (decimated) DWT
A' Trous ("with holes"), 23, 50
jargon alert, 23
producing artifacts, 291, 296
stretching the filters , 21-25, 50-54
upsampling by two (dyadic), 18, 23, 101, 208

\mathbf{V}

Vanishing moments, 175-176. See also specific wavelet

W

Wavelet artifacts, 281, 290, 295-296, 299
Wavelet domain, 10, 297-298

Wavelet filters (list), 219. See also specific wavelet
Wavelet Packet Transform (WPT). See also Conventional DWT
decomposition and reconstruction portions, 138
nodes, 139
packet switching, similarities to, 139
transmultiplexers, similarities to, 139-140
Wavelets: Beyond Comparison (article by author), C1-C10
Windows
Blackman, 79, 198
Hamming, 79, 198
Hanning (Von Hann), 79, 198

Z

Z transform, 152-154, 183

